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ABSTRACT

Only a few parameters that affect the machiningc@se in ECM are controllable. It is clearly estsiidid from
reported works that results reported in literattaanot be extrapolated. So for any new materiddctmlyte combination
and machining conditions experiments need to belucted to predict the effects of process parametersnachined
geometry. For effective exploitation of ECM for mang SG Iron it is essential to develop models goedicting the
nature of surface that will be generated. Two widesed methods for correlating controllable progessameters and
surface roughness parameters are Design of Expasnaad Artificial Neural Networks (ANN). The bagkepagation
algorithm is used widely as a learning algorithmféed-forward multilayer neural network. A largetalset is usually
necessary to train the ANNs. However, generatitegge number of data for training ANN is not oniné¢ consuming but
very expensive. Hence to reduce the cost of deirjoN models it is decided to train the networkhwvonly those
thirteen data that are used for developing Box Rehndesign based models. The three configuratidnthen ANN
considered are 3-10-10-1, 3-20-20-20-1 and3-39%9-3Because of the small data set the deviatiasdnbetween
predictions obtained using Box-Behnken models ahiN#g are high. Denoising is done in two stages usittiscale
Principal Component Analysis (PCA) and dropping high frequency coefficients by filtering with Daethies wavelet.
The first stage denoising carried out using PCArkaslted in significant reduction in deviationr@e). After second level
denoising the errors have reduces further. Of iheet network configurations studied lowest configion gave the best
results in majority of the cases and where asHerhighest configuration, the denoising effectnialh. Not only the error
is reduced but the number of points with large mritas reduced substantially. The differences batvtiee outputs from

the neural network model and Box Behnken modelsvatewithin the confidence intervals calculatedrfr ANOVA.

KEYWORDS: Artificial Neural Network, Box Behnken Design, Désing, Electrochemical Machining, Principal
Component Analysis, SG Iron, Sa, Sq, Sz, Ssk, Skumr, Smvr, SHtp, Wavelet Analysis

INTRODUCTION

Electrochemical machining (ECM) can be used to nmeclcomplex features in hard and difficult to mahi
electrically conductive materials with negligibteot wear, reasonable accuracy and acceptable sufifash. Only a few
parameters that affect the machining process arratlable. ECM results of only a few combinatianfselectrolyte and
work-piece material, under specific machining ctinds have been reported. It is clearly establighedl results reported
in literature cannot be extrapolated. So for any neaterial - electrolyte combination and machiniognditions

experiments need to be conducted to predict tleetsfiof process parameters on machined geometry.
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Little information is available on machining of S@on by electrochemical machining process [1].
For commercial exploitation of ECM for machining $@n it is essential to develop models for pradigtthe nature of

surface that will be generated.

Models based on experimental results may be gemkressing many methods. Two widely used methods are

Design of Experiments and Artificial Neural NetwsrfANN).

The back-propagation algorithm is used widely akaning algorithm in feed-forward multilayer nelr
network. The back-propagation is applied to feeuvézd ANNs with one or more than one hidden layB@sed on this
algorithm, the network learns a distributed assb@anap between the input and output layers. Tdtevork is trained by
repeatedly using a set of input-target data. Thevaerl learns the relationship between the input tardet data by
adjusting the weights to minimize the error betwdaninput and target values. The major advanta&PNN over the

regression technique are: [2, 3]
* No mathematical model is required
» Capable of modeling highly non linear relationship
» Capable of using dispersed data in the solutionailom
e Existing models can be refined using new dataestdy through training
* In spite of the advantages it has over the regregsiodels, there are a number of drawbacks. Sonreof are:

* No theoretical basis exists to determine the nunabéridden layers and number of neurons thereiffef2int

configurations of BPNN have great effects on thedpnted results.
» Scaling of the data to suit the non-linearity fuoct(usually sigmoid) has great effect on predictesllts.

Developing models based on design of experimeetsiar easy. Many times data need to be transfotmethke
the variable normal. Finding out the transformatémuations are not straight forward. Secondly,csielg the design of
experiments is a challenging task. Thirdly, the ple¢annot be upgraded even if addition informaisoreceived at a later
date. To overcome some of these problems back-gabpa networks are constructed and trained udeg Neural
Network Toolbox of the software package MATLAB [#or effective training of the NN a large numbedata is usually
necessary. For example it is reported [5] that ddta were used to train the NN and 110 data are fasetesting the
network. Experiments are very costly and time cariag. Hence to reduce the cost of developing NN e is decided

to train the network with only those thirteen diat are used for developing Box Behnken desigedazodels.
Development of the NN models:

Box-Behnken design [6] is used for developing teeosid order mathematical models. The general misdel

given below.
Y = By+ BT+ B,V +B3G+ By T2 + BV 2 +B3yG’ +B15TV+B 15 TG+BVG
Where, T — machining time, V — applied potentiak-@ap between tool and work-piece
For simplifying the recording of the conditions tbe experiments and processing of the experimelatia, the

upper, lower and intermediate levels of the vagaladre coded as +1, -1& 0O, respectively. The ewgerial levels and the

Impact Factor (JCC): 3.8967 NAAS Rating.02
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design matrix are shown ifable 1, 2 Two electrolyte solutions used are KCI soluti@®d@ grams of KCI / litre of tap
water) and NaN@solution (400 grams/litre of tap water).

Table 1: The Actual and Coded Values of Different ®riables

Variables Symbol Low Level Intermediate Level High Level
Actual Coded Actual Coded | Actual | Coded
TIME (minutes) T 2 -1.0 3 0 4 +1.0
POTENTIAL (volt) \% 15 -1.0 20 0 25 +1.0
INTER ELECTRODE GAP (mm) | G 0.64 -1.0 0.96 0 1.28/ .01

Specification of work-piece material is given Table 3. The details of experimentation, the models arel th
statistical analyses are given in ref [7]. Besidlescking statistical validity of the models, expental verification is also

carried out [7].

Table 2: Design Matrix

Variables
Sl. No. T V]G
1 1] -1 0
2 +1 | -1 0
3 1| 41 O
4 +1 | +1| O
5 -1 0 -1
6 +1 0 -1
7 -1 0| +1
8 +1 | 0| +1
9 0 1] -1
10 0O | +1| -1
11 0 -1 +1
12 0 | +1| +1
13 0 0 0
14 0 0 0
15 0 0 0

Table 3: Work-Piece Material Specification (SG Iron

Chemical Composition
%C %Si | %Mn | %S %P
3.60- | 2.30-| 0.35- | 0.014-| 0.083-
3.63 2.38 | 0.36 | 0.013 | 0.080

BHN | Nodularity %

179 58.24

The confidence intervals for surface roughness esmlgalculated from the models are also calculated.

The variance for the mean predicted values caraloelated using equation 1 [8].
— 2 5 13 7
V(J’)=%— ZUZ(ZXL'ZO)'F 502(295{‘?))‘?502(2%2095]20 1)

The confidence interval is calculated based orethetion (2).

Yio=™ Yio ’ 8% X Foos1s Where,S% = SZ[1+ V()] 2

Where, (y): variance of estimated response at a point give(xRyx.o, X3,), 6 : mean square erragf? = Mean

square of residuajj;, = calculated response at a point giventyy,(x,4, X30). F : F-ratio.
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The coefficients of the second order models fofasmer roughness parameters viz. Sq (Root-Mean-SRMS)

Deviation of the Surface, um), Sku (Kurtosis of fapography Height Distribution), Ssk (Skewnesshaf Topography

Height Distribution), SHtp (Surface section heiglifference(20% - 80%) and the statistical analyass given in

Table 4. The experimental conditions and results obtaiinedh the models along with confidence intervals gireen in

Table 5. The experimental values are within the confidenterval hence the models can be used for optiiniza

Table 4: The Coefficients of the Models Developechd the Statistical
Model Parameters for KCI & Nanos Electrolyte

KCI Electrolyte NaNO; Electrolyte
Sq Ssk Sku SHtp Sq Ssk Sku SHtp
B, 8.30667 -0.18087 2.84333 13.43334  6.78000 -0.325403.16000 12.6000
Ol B, 0.44000 0.06925 0.1875( 2.1462p 0.38875 -0.406500.44750 0.32250
& B, 1.12625 -0.22128 -0.2387 2.11500 0.12750 -0.400371.95250 -0.64250
2| Bs 0.08125 -0.19798 0.22875 0.4437p  -1.62125 -0.074620.49000 -3.39000
a, By 0.01666 -0.28504 0.19083 -0.30792  -0.42000 0.701j58-0.34625 -0.48375
ol B 2.06916 0.15891 0.31333 457458 -3.50250 -0.450171.68375 -7.93375
2| Bas -3.08084 | -0.00009 -0.3367 -4.83792  1.155p0 -0.3151 -0.03625 2.74125
a2 | Bz -1.25750 0.36600 0.6825( -1.60000 0.69250 -0.51400:0.92750 0.58250
Z| By 0.55250 -0.29150 0.1275(0 0.0025pD 3.02500 -0.212000.52250 6.59250
2| B 1.29000 0.09155 0.30000¢ 2.0300p 2.03750 -0.31125 .30780 3.39750
2 [ Framo 0.82413 0.05233 0.50843 0.35424 9.44613 0.27768 336@7 0.23678
9 o 0.27373 0.08892 0.02243 2.9433pB 0.05230 0.10201 27181 3.87000
S R® 98.5071 91.5377 98.2455 96.865p 98.7993  96.26523 5.3997 98.2579
g R%(ad) 95.8199 76.3056 95.0874 91.222/7 96.6380  89.54265 7.0988 95.1223
@ | R%pred 85.2914 72.4920 85.6117 77.9881 81.87568  76.49660 8.37648 89.8026
Table 5: Model Validation (KCI Electrolyte)
ECM Parameters From Experiment From Model
Sl. No T \ G Sq Ssk S«u S—ITp Sq &k S(u S—ITp
coded | 0.15| -0.4 -1.0
1 3.15| 18 499 | 0.262| 251 9.08 5.6 0.199 2.516 9.2
actual min. v 0.64 mm
Confidnce interval (%) 1.515 0.6 0.38p 4.11
coded | 0.5 -0.2] 1.0
2 actual 3.5 19 1.28 499 | -0.55 3.06 8.58| 5.533 -0.565 2.873 9.55
min. | v mm
Confidnce interval (%) 1.5268 0.6043 0.388 4.14
coded | -1.0/ 0.5| 0.34375 852 -0.2%9 2.7 148 9.288.7412 | 2.511] 13.909
3 actual 3.'5 19v | 1.28 mm
min.
Confidnce interval (%) 1.535 0.6075 0.390 4.16bH

Using the experimental data the NN models aredthiithe thirteen experimental data for each sunfacghness

parameters are used to train the NN models. Thigtwations of neural networks trained are giveifable 6.

Table 6: Configuration of the Neural Networks Trained

BPNN Abbreviations Network Configuration
BPNN - N1 3-10-10-10-1
BPNN - N2 3-20-20-20-1
BPNN — N3 3-39-39-39-1

Nonlinear functions chosen are tan-sigmoid and lpurdraining algorithm used is Levenberg-Marquardt

Stopping criteria used is 300 epochs or error éwlee of 0.0001. For every network configuratiomtyhnew starts are

Impact Factor (JCC): 3.8967

NAAS Rating.02
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considered. The network is trained with random Weigand average output is calculated. The averatmubis used for
analyses. For validation of the neural network nfdeveloped, the models are tested with 8669 iopndlitions in coded
form within the design space of sphere of radiusafThe outputs from NN and outputs from the Box e models

for the same input conditions are compared.

Analysis of ANN Results:Figure 1 shows the absolute deviation (error) between ANdH@efs and Statistical
model. As the statistical models are experimentadijdated hence, the outputs are taken to be atdnd@he deviations
(errors) noted are quite high. Similar trends aensalso in other casdsidure 4, 7, 9, 11, 13, 15& 1)7As a very few data
(13 nos.) is used for fitting the neural networkd®als containing a large number of neurons hencelthace of noise is
high. To remove the noise a two stage strategwgésl.uln the first stage Principal Component Analysiused to denoise
and in the second stage wavelet decompositioreld ttsdenoise the models.

[Enar with 10 neurons s each hidden lare |
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Figure 1: Absolute Errors w.r.t. Statistical Model (Sq_KCI)

Eror for 10 aeurons per hiddan lare

f“‘“ \,‘I v
W W, “v‘ W

Diiscrete Levels of Process Faramsters

Figure 3: Absolute Errors w.r.t. Statistical Model 2" Stage De-Noising (Sq_KClI)
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Figure 4: Absolute Errors w.r.t. Statistical Model (Sq_NaNG;
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Figure 5: Absolute Errors w.r.t. Statistical Model_1% Stage De-Noising (Sq_NaNg»
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Figure 6: Absolute Errors w.r.t. Statistical Model 2" Stage De-Noising (Sq_NaN§)
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Figure 7: Absolute Errors w.r.t. Statistical Model (Sku_KCI)
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Figure 8: Absolute Errors w.r.t. Statistical Model 2% Stage De-Noising (Sku_KClI)
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Figure 9: Absolute Errors w.r.t. Statistical Model (Sku_NaNGy)
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Figure 10: Absolute Errors w.r.t. Statistical Model 2" Stage De-Noising (Sku_NaNg)
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Figure 11: Absolute Errors w.r.t. Statistical Model (Ssk_KCI)
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Figure 12: Absolute Errors w.r.t. Statistical Model 2™ Stage De-Noising (Ssk_KCI)
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Figure 13: Absolute Errors w.r.t. Statistical Model (Ssk_NaNQ)
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Figure 14: Absolute Errors w.r.t. Statistical Model 2" Stage De-Noising (Ssk_NaN£p
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Figure 15: Absolute Errors w.r.t. Statistical Model (SHtp_KCI)
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Figure 16: Absolute Errors w.r.t. Statistical Model 2" Stage De-Noising (SHtp_KCI)

Figure 18: Absolute Errors w.r.t. Statistical Model 2" Stage De-Noising (SHtp_NaNg)

Denoising the ANN Model

Denoising is done in two stages using : MultiscBlencipal Component Analysis and dropping the high
frequency coefficients by filtering with Daubechiesvelet (DB6)[9]. Multivariate denoising using vedets is used to
denoise the model obtained from neural networkJ1D-The aim of multiscale PCA is to reconstru¢arting from a
multivariate signal and using a simple represemtatat each resolution level, a simplified multizaei signal.
The multiscale principal component generalizes ibemal PCA of a multivariate signal representedaamatrix by
performing a PCA on the matrices of details ofeafi#t levels simultaneously. A PCA is also perfaino@ the coarser
approximation coefficients matrix in the wavelentain as well as on the final reconstructed mattix12]. By selecting
the numbers of retained principal components, éstamg simplified signals can be reconstructed .[¥3]simplified
multivariate signal is obtained starting from a tivalriate signal obtained from NN and using a seng@presentation at
each resolution level. Kaiser's [14] rule is use#deps the components associated with eigenvgheaser the mean of all
eigenvaluesThe Kaiser rule is to drop all components with aigdues under 1.0, this being the eigenvalue eutie
information accounted for by an average single it&nvariation of this method has been created whemefidence
intervals are calculated for each eigenvalue aryg factors which have the entire confidence integ@ater than 1.0 are
retained [15-16].
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Algorithm:;
* Read a multivariate signal.
» Set the wavelet parameters such as level of decsitigpoand mother wavelet.
»  Select the number of retained principal componasiisg Kaiser's rule.
» Perform a simple multiscale PCA.
* Improve the obtained result by retaining less ppalccomponents.

e Suppress the details at levels 1 to n, update tinebars of retained principal components selecte&diger's

rule.
e Perform multiscale PCA again.
« Estimate Performance parameters
» Display the original Signal, Noisy Signal and Dessal signals.

The Dropping of the high frequency coefficienty |8 used for decomposition of response. Sixth orde
decomposition is carried out. Sixth order low pessfficients are used for reconstruction of respogusd the high pass

coefficients are filtered out.
RESULTS AND DISCUSSIONS

The two stage denoising has reduced the error antiwty. The first stage denoising carried oungsPCA has
resulted in significant reduction in deviation @@ It can be observed froffigure 2 & 5 that not only the error is
reduced but the number of points with large ertuage reduced substantially. This can be interprétu the density
variation between the original and these figuresterA second level denoising the errors have reducether
(Figure 3, 6, 8, 10, 12, 14, 16 & )8The differences between the outputs from theralenetwork model and Box

Behnken models are well within the confidence weés calculated from ANOVA.

It may be concluded that useful BP-ANN models bandeveloped based on a small number of data points
placed on the boundary and centre of the desigoespfier two stages of denoising the models. Oftlihee network
configurations studied lowest configuration N1 gaélve best results in majority of the cases and a/lasrfor the highest

configuration N3 the denoising effect is small.
CONCLUSIONS

e ltis possible to develop effective NN models usingmall set of data. The data points may be ssldzdsed of

statistical design of experiments.
* Two stage denoising has effectively reduced theenisi NN models.

» Confidence interval for the predicted response bmyalculated based on a few experiments at thercehthe

design space. NN models along with confidence vwalewill be a very powerful tool.
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