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ABSTRACT  

Only a few parameters that affect the machining process in ECM are controllable. It is clearly established from 

reported works that results reported in literature cannot be extrapolated. So for any new material - electrolyte combination 

and machining conditions experiments need to be conducted to predict the effects of process parameters on machined 

geometry. For effective exploitation of ECM for machining SG Iron it is essential to develop models for predicting the 

nature of surface that will be generated. Two widely used methods for correlating controllable process parameters and 

surface roughness parameters are Design of Experiments and Artificial Neural Networks (ANN). The back–propagation 

algorithm is used widely as a learning algorithm in feed-forward multilayer neural network. A large data set is usually 

necessary to train the ANNs. However, generating a large number of data for training ANN is not only time consuming but 

very expensive. Hence to reduce the cost of developing NN models it is decided to train the network with only those 

thirteen data that are used for developing Box Behnken design based models. The three configurations of the ANN 

considered are 3-10-10-1, 3-20-20-20-1 and3-39-39-39-1. Because of the small data set the deviations noted between 

predictions obtained using Box-Behnken models and ANNs are high. Denoising is done in two stages using Multiscale 

Principal Component Analysis (PCA) and dropping the high frequency coefficients by filtering with Daubechies wavelet. 

The first stage denoising carried out using PCA has resulted in significant reduction in deviation (error). After second level 

denoising the errors have reduces further. Of the three network configurations studied lowest configuration gave the best 

results in majority of the cases and where as for the highest configuration, the denoising effect is small. Not only the error 

is reduced but the number of points with large errors has reduced substantially. The differences between the outputs from 

the neural network model and Box Behnken models are well within the confidence intervals calculated from ANOVA. 

KEYWORDS: Artificial Neural Network, Box Behnken Design, Denoising, Electrochemical Machining, Principal 

Component Analysis, SG Iron, Sa, Sq, Sz, Ssk, Sku, Smmr, Smvr, SHtp, Wavelet Analysis 

INTRODUCTION  

Electrochemical machining (ECM) can be used to machine complex features in hard and difficult to machine 

electrically conductive materials with negligible tool wear, reasonable accuracy and acceptable surface finish. Only a few 

parameters that affect the machining process are controllable. ECM results of only a few combinations of electrolyte and 

work-piece material, under specific machining conditions have been reported. It is clearly established that results reported 

in literature cannot be extrapolated. So for any new material - electrolyte combination and machining conditions 

experiments need to be conducted to predict the effects of process parameters on machined geometry.  
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 Little information is available on machining of SG Iron by electrochemical machining process [1].                            

For commercial exploitation of ECM for machining SG Iron it is essential to develop models for predicting the nature of 

surface that will be generated.  

 Models based on experimental results may be generated using many methods. Two widely used methods are 

Design of Experiments and Artificial Neural Networks (ANN). 

 The back–propagation algorithm is used widely as a learning algorithm in feed-forward multilayer neural 

network. The back-propagation is applied to feed-forward ANNs with one or more than one hidden layers. Based on this 

algorithm, the network learns a distributed associative map between the input and output layers. The network is trained by 

repeatedly using a set of input-target data. The network learns the relationship between the input and target data by 

adjusting the weights to minimize the error between the input and target values. The major advantages of BPNN over the 

regression technique are: [2, 3] 

• No mathematical model is required 

• Capable of modeling highly non linear relationship 

• Capable of using dispersed data in the solution domain 

• Existing models can be refined using new data sets easily through training  

• In spite of the advantages it has over the regression models, there are a number of drawbacks. Some of them are: 

• No theoretical basis exists to determine the number of hidden layers and number of neurons therein. Different 

configurations of BPNN have great effects on the predicted results. 

• Scaling of the data to suit the non-linearity function (usually sigmoid) has great effect on predicted results.  

Developing models based on design of experiments are not easy. Many times data need to be transformed to make 

the variable normal. Finding out the transformation equations are not straight forward. Secondly, selecting the design of 

experiments is a challenging task. Thirdly, the models cannot be upgraded even if addition information is received at a later 

date. To overcome some of these problems back-propagation networks are constructed and trained using the Neural 

Network Toolbox of the software package MATLAB [4]. For effective training of the NN a large number of data is usually 

necessary. For example it is reported [5] that 442 data were used to train the NN and 110 data are used for testing the 

network. Experiments are very costly and time consuming. Hence to reduce the cost of developing NN models it is decided 

to train the network with only those thirteen data that are used for developing Box Behnken design based models.  

Development of the NN models:  

Box-Behnken design [6] is used for developing the second order mathematical models. The general model is 

given below. 

 Y = Bo + B1T+ B2V +B3G+ B11T
2 + B22V

2 +B33G
2 +B12TV+B13TG+B23VG  

Where, T – machining time, V – applied potential, G – gap between tool and work-piece  

For simplifying the recording of the conditions of the experiments and processing of the experimental data, the 

upper, lower and intermediate levels of the variables are coded as +1, -1& 0, respectively. The experimental levels and the 
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design matrix are shown in Table 1, 2. Two electrolyte solutions used are KCl solution (250 grams of KCl / litre of tap 

water) and NaNO3 solution (400 grams/litre of tap water). 

Table 1: The Actual and Coded Values of Different Variables 

Variables Symbol Low Level  Intermediate Level High Level 

Actual Coded Actual Coded Actual Coded 
TIME (minutes) T 2 -1.0 3 0 4 +1.0 
POTENTIAL (volt) V 15 -1.0 20 0 25 +1.0 
INTER ELECTRODE GAP (mm) G 0.64 -1.0 0.96 0 1.28 +1.0 

 
Specification of work-piece material is given in Table 3. The details of experimentation, the models and the 

statistical analyses are given in ref [7]. Besides checking statistical validity of the models, experimental verification is also 

carried out [7].  

Table 2: Design Matrix 

Sl. No. 
Variables 

T V G 
1 -1 -1 0 
2 +1 -1 0 
3 -1 +1 0 
4 +1 +1 0 
5 -1 0 -1 
6 +1 0 -1 
7 -1 0 +1 
8 +1 0 +1 
9 0 -1 -1 
10 0 +1 -1 
11 0 -1 +1 
12 0 +1 +1 
13 0 0 0 
14 0 0 0 
15 0 0 0 

 
Table 3: Work-Piece Material Specification (SG Iron) 

Chemical Composition 
BHN Nodularity % 

%C %Si %Mn %S %P 
3.60-
3.63 

2.30-
2.38 

0.35-
0.36 

0.014-
0.013 

0.083-
0.080 

179 58.24 

 
The confidence intervals for surface roughness values calculated from the models are also calculated.                          

The variance for the mean predicted values can be calculated using equation 1 [8]. 

�(�)� = ��
	 −	 �
��
(∑ ���
 ) + 	�	���
(∑ ���� ) + �


��
�∑ ���
 ���
 �	                                                                               (1) 

The confidence interval is calculated based on the equation (2). 

yio= ���� ±	�	���
 ×	 !.!�,�,�	 where, ���
 = �$
[1 + �(�)�]                                                                                        (2) 

Where, (()�: variance of estimated response at a point given by (��� , �
!, �	!), σ : mean square error, �$
 = Mean 

square of residual, ���� = calculated response at a point given by (��� , �
!, �	!). F : F-ratio. 
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The coefficients of the second order models for surface roughness parameters viz. Sq (Root-Mean-Square (RMS) 

Deviation of the Surface, µm), Sku (Kurtosis of the Topography Height Distribution), Ssk (Skewness of the Topography 

Height Distribution), SHtp (Surface section height difference(20% - 80%) and the statistical analyses are given in                   

Table 4. The experimental conditions and results obtained from the models along with confidence intervals are given in 

Table 5. The experimental values are within the confidence interval hence the models can be used for optimization.  

Table 4: The Coefficients of the Models Developed and the Statistical  
Model Parameters for KCl & Nano3 Electrolyte 

  KCl Electrolyte NaNO3 Electrolyte 
  Sq Ssk Sku SHtp Sq Ssk Sku SHtp 

C
o

efficien
ts O

f T
h

e M
o

d
els D

evelo
p

ed 

Bo 8.30667 -0.18087 2.84333 13.43334 6.78000 -0.32540 3.16000 12.6000 
B1 0.44000 0.06925 0.18750 2.14625 0.38875 -0.40650 -0.44750 0.32250 
B2 1.12625 -0.22128 -0.2387 2.11500 0.12750 -0.40037 1.95250 -0.64250 
B3 0.08125 -0.19798 0.22875 0.44375 -1.62125 -0.07462 0.49000 -3.39000 
B11 0.01666 -0.28504 0.19083 -0.30792 -0.42000 0.70158 -0.34625 -0.48375 
B22 2.06916 0.15891 0.31333 4.57458 -3.50250 -0.45017 1.68375 -7.93375 
B33 -3.08084 -0.00009 -0.3367 -4.83792 1.15500 -0.31517 -0.03625 2.74125 
B12 -1.25750 0.36600 0.68250 -1.60000 0.69250 -0.51400 -0.92750 0.58250 
B13 0.55250 -0.29150 0.12750 0.00250 3.02500 -0.21200 -0.52250 6.59250 
B23 1.29000 0.09155 0.30000 2.03000 2.03750 -0.31125 0.30750 3.39750 
FRATIO 0.82413 0.05233 0.50843 0.35424 9.44613 0.27768 0.33677 0.23678 
σ2 0.27373 0.08892 0.02243 2.94333 0.05230 0.10201 0.27181 3.87000 
R2 98.5071 91.5377 98.2455 96.8652 98.7993 96.26523 95.3927 98.2579 
R2

(adj) 95.8199 76.3056 95.0874 91.2227 96.6380 89.54265 87.0998 95.1223 
R2

(pred) 85.2914 72.4920 85.6117 77.9881 81.8758 76.49660 68.3718 89.8026 
 

Table 5: Model Validation (KCl Electrolyte) 

 ECM Parameters From Experiment From Model 
Sl. No  T V G Sq Ssk Sku SHTp Sq Ssk Sku SHTp 

1 
coded 0.15 -0.4 -1.0 

4.99 0.262 2.51 9.08 5.6 0.199 2.516 9.26 
actual 

3.15 
min. 

18 
v 

0.64 mm 

Confidnce interval (±)  1.515 0.6 0.385 4.11 

2 
coded 0.5 -0.2 1.0 

4.99 -0.55 3.06 8.58 5.533 -0.5656 2.873 9.55 
actual 

3.5 
min. 

19 
 v 

1.28 
mm 

Confidnce interval (±)  1.5268 0.6043 0.388 4.14 

3 
coded -1.0 0.5 0.34375 8.52 -0.259 2.7 14.8 9.288 -0.7412 2.511 13.909 

actual 
3.5 
min. 

19 v 1.28 mm         

Confidnce interval (±)  1.535 0.6075 0.390 4.165 
 

Using the experimental data the NN models are trained. The thirteen experimental data for each surface roughness 

parameters are used to train the NN models. The configurations of neural networks trained are given in Table 6. 

Table 6: Configuration of the Neural Networks Trained 

BPNN Abbreviations Network Configuration 
BPNN - N1 3 – 10 – 10 – 10 -1 
BPNN - N2 3 – 20 – 20 - 20 - 1 
BPNN – N3 3 – 39 – 39 – 39 - 1 

 
Nonlinear functions chosen are tan-sigmoid and purelin. Training algorithm used is Levenberg-Marquardt. 

Stopping criteria used is 300 epochs or error tolerance of 0.0001. For every network configuration thirty new starts are 
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considered. The network is trained with random weights and average output is calculated. The average output is used for 

analyses. For validation of the neural network models developed, the models are tested with 8669 input conditions in coded 

form within the design space of sphere of radius of √2. The outputs from NN and outputs from the Box Behnken models 

for the same input conditions are compared.  

 Analysis of ANN Results: Figure 1 shows the absolute deviation (error) between ANN models and Statistical 

model. As the statistical models are experimentally validated hence, the outputs are taken to be standard. The deviations 

(errors) noted are quite high. Similar trends are seen also in other cases (Figure 4, 7, 9, 11, 13, 15& 17). As a very few data 

(13 nos.) is used for fitting the neural network models containing a large number of neurons hence the chance of noise is 

high. To remove the noise a two stage strategy is used. In the first stage Principal Component Analysis is used to denoise 

and in the second stage wavelet decomposition is used to denoise the models.  

 

Figure 1: Absolute Errors w.r.t. Statistical Model (Sq_KCl) 

 

Figure 2: Absolute Errors w.r.t. Statistical Model_1st Stage De-Noising (Sq_KCl) 

 

Figure 3: Absolute Errors w.r.t. Statistical Model_2nd Stage De-Noising (Sq_KCl) 
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Figure 4: Absolute Errors w.r.t. Statistical Model (Sq_NaNO3 

 

Figure 5: Absolute Errors w.r.t. Statistical Model_1st Stage De-Noising (Sq_NaNO3) 

 

Figure 6: Absolute Errors w.r.t. Statistical Model_2nd Stage De-Noising (Sq_NaNO3) 

 

Figure 7: Absolute Errors w.r.t. Statistical Model (Sku_KCl) 
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Figure 8: Absolute Errors w.r.t. Statistical Model_2st Stage De-Noising (Sku_KCl) 

 

Figure 9: Absolute Errors w.r.t. Statistical Model (Sku_NaNO3) 

 

Figure 10: Absolute Errors w.r.t. Statistical Model_2nd Stage De-Noising (Sku_NaNO3) 

 

Figure 11: Absolute Errors w.r.t. Statistical Model (Ssk_KCl) 
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Figure 12: Absolute Errors w.r.t. Statistical Model_2nd Stage De-Noising (Ssk_KCl) 

 

Figure 13: Absolute Errors w.r.t. Statistical Model (Ssk_NaNO3) 

 

Figure 14: Absolute Errors w.r.t. Statistical Model_2nd Stage De-Noising (Ssk_NaNO3) 

 

Figure 15: Absolute Errors w.r.t. Statistical Model (SHtp_KCl) 
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Figure 16: Absolute Errors w.r.t. Statistical Model_2nd Stage De-Noising (SHtp_KCl) 

 

Figure 17: Absolute Errors w.r.t. Statistical Model (SHtp_NaNO3) 

 

Figure 18: Absolute Errors w.r.t. Statistical Model_2nd Stage De-Noising (SHtp_NaNO3) 

Denoising the ANN Model 

Denoising is done in two stages using : Multiscale Principal Component Analysis and dropping the high 

frequency coefficients by filtering with Daubechies wavelet (DB6)[9]. Multivariate denoising using wavelets is used to 

denoise the model obtained from neural network [10-11]. The aim of multiscale PCA is to reconstruct, starting from a 

multivariate signal and using a simple representation at each resolution level, a simplified multivariate signal.                           

The multiscale principal component generalizes the normal PCA of a multivariate signal represented as a matrix by 

performing a PCA on the matrices of details of different levels simultaneously. A PCA is also performed on the coarser 

approximation coefficients matrix in the wavelet domain as well as on the final reconstructed matrix [11-12]. By selecting 

the numbers of retained principal components, interesting simplified signals can be reconstructed [13]. A simplified 

multivariate signal is obtained starting from a multivariate signal obtained from NN and using a simple representation at 

each resolution level. Kaiser's [14] rule is used to keeps the components associated with eigenvalues greater the mean of all 

eigenvalues. The Kaiser rule is to drop all components with eigenvalues under 1.0, this being the eigenvalue equal to the 

information accounted for by an average single item. A variation of this method has been created where confidence 

intervals are calculated for each eigenvalue and only factors which have the entire confidence interval greater than 1.0 are 

retained [15-16]. 
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Algorithm: 

• Read a multivariate signal. 

• Set the wavelet parameters such as level of decomposition and mother wavelet. 

• Select the number of retained principal components using Kaiser's rule. 

• Perform a simple multiscale PCA. 

• Improve the obtained result by retaining less principal components. 

• Suppress the details at levels 1 to n, update the numbers of retained principal components selected by Kaiser's 

rule. 

• Perform multiscale PCA again. 

• Estimate Performance parameters 

• Display the original Signal, Noisy Signal and Denoised signals. 

 The Dropping of the high frequency coefficients [9] is used for decomposition of response. Sixth order 

decomposition is carried out. Sixth order low pass coefficients are used for reconstruction of response and the high pass 

coefficients are filtered out.  

RESULTS AND DISCUSSIONS 

The two stage denoising has reduced the error substantially. The first stage denoising carried out using PCA has 

resulted in significant reduction in deviation (error). It can be observed from Figure 2 & 5 that not only the error is 

reduced but the number of points with large errors have reduced substantially. This can be interpreted from the density 

variation between the original and these figures. After second level denoising the errors have reduces further                                    

(Figure 3, 6, 8, 10, 12, 14, 16 & 18). The differences between the outputs from the neural network model and Box 

Behnken models are well within the confidence intervals calculated from ANOVA.  

 It may be concluded that useful BP-ANN models can be developed based on a small number of data points 

placed on the boundary and centre of the design space after two stages of denoising the models. Of the three network 

configurations studied lowest configuration N1 gave the best results in majority of the cases and where as for the highest 

configuration N3 the denoising effect is small.  

CONCLUSIONS 

• It is possible to develop effective NN models using a small set of data. The data points may be selected based of 

statistical design of experiments. 

• Two stage denoising has effectively reduced the noise in NN models. 

• Confidence interval for the predicted response may be calculated based on a few experiments at the center of the 

design space. NN models along with confidence interval will be a very powerful tool. 
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